
Define the Real
Customer Needs

C H A P T E R F O U R

57

Use and continually improve a requirements process.

Iterate the system requirements
and architecture repeatedly.

Select familiar methods and maintain a set of work products.

Perform requirements verification and validation.

Provide an effective mechanism to
accommodate requirements changes.

.

Perform the development effort using known, familiar
proven industry, organizational, and project best practices.

Use a mechanism to maintain project communication.

Commit to the approach.

Establish and utilize a Joint Team
responsible for the requirements.

Define the real customer needs.

This chapter provides specific recommendations to determine the real

requirements for a planned system.

Most any supplier that has designed, developed, and implemented a system

for a buyer would assert that it had “performed extensive effort to define the real

customer needs.” All suppliers go to extensive efforts to meet the needs of buyers

of systems. Why, then, this chapter?

As discussed in Chapter 1, industry experience indicates that systems pro-

vided by suppliers often do not meet customer needs. In spite of extensive efforts,

suppliers fail to measure up to expectations with the delivered systems.

I distinguish between real customer requirements and needs and stated

requirements and needs. There is a huge difference between the two, and this dif-

ference accounts for many of our requirements-related problems. Historically,

clients have not been able to articulate their real customer requirements and

needs. Accordingly, an effective requirements process must provide for the time,

resources, mechanisms, methods, techniques, tools, and trained requirements

engineers familiar with the application domain to define the real customer

requirements and needs.

This problem is not limited to large systems. Small projects1 also experience

the failure to identify the real requirements. My experience is that the practices

presented in this book are applicable to projects of all sizes.2 The differences are

in the tailoring of the implementation approach. I provide some suggestions in

the following chapters.

58 Define the Real Customer Needs

1There is no industry agreement on the definition of a “small project.” One could consider it a

“team.” Often it is considered a project involving one to six professionals operating for as long

as three to six months, but this definition is arbitrary. Consideration has been given in the

industry literature to whether “small projects” are really all that different from “medium-size”

or even “large” projects. See Mark Paulk, Using the Software CMM with Judgment: Small
Projects & Small Organizations; Rita Hadden, Now What Do We Do?; and Louise Williams,

SPI Best Practices for Small Projects. Members of small projects should be encouraged to take

what they can from the experiences of larger projects by tailoring the approach, rather than

using smallness as an excuse for not taking advantage of industry lessons. For a perspective

giving careful attention and focus to “smallness,” see Brodman and Johnson, The LOGOS
Tailored CMM for Small Businesses, Small Organizations, and Small Projects. The changes tailor

the Capability Maturity Model for Software (SW-CMM) for a small project environment.

Participants in small projects or organizations may find this reference helpful.

2Rita Hadden’s view based on observations and experience with more than 50 small projects is

that professional judgment can be used to scale down and apply key practices appropriately to

achieve positive outcomes for small projects. See “How Scalable Are CMM Key Practices?”

Industry consultant Karl Wiegers expresses the problem this way:

Requirements exist in the minds of users, visionaries, and developers, from

which they must be gently extracted and massaged into a usable form. They

need to be discovered with guidance from a talented requirements engineer

who helps users understand what they really need to meet their business

needs and helps developers satisfy those needs. Few project roles are more

difficult than that of the requirements engineer. Few are more critical.3

This chapter provides several recommendations to facilitate getting to the

real requirements. Obviously, if we’re not using a base of the real requirements to

perform our system development work, huge amounts of resources are being

misspent. These recommendations will help you to redirect these resources in

ways that will produce better results.

Recommendations to Facilitate Getting to the Real Requirements

The following recommendations help to explain and perform an improved

approach and are discussed in turn in the following subsections:

1. Invest 8% to 14% of total program costs on the requirements process. Spend

additional time and effort near the beginning of a project to work to identify

the real requirements. Ensure joint user and supplier responsibility for re-

quirements. Facilitate clarification of the real requirements. Control changes

to requirements.

2. Train program and project managers (PMs) to pay more attention to the

requirements process.

3. Identify a project champion. A project champion is an advocate for the

effort, is very familiar with the set of real customer needs for a system, and

provides an active role in the development activities, facilitating the tasks of

the development team.

4. Develop a definition of the project vision and scope.

5. Identify a requirements engineer and utilize domain experts to perform

requirements engineering tasks.

6. Train developers not to make requirements decisions and not to gold plate.

Recommendations to Facilitate Getting to the Real Requirements 59

3Karl Wiegers, “Habits of Effective Analysts,” p. 65.

7. Utilize a variety of techniques to elicit user requirements and expectations.

Use a common set of techniques and tools among all parties involved in a

particular project.

8. Train requirements engineers to write good requirements.

9. Document the rationale for each requirement.

10. Utilize methods and automated tools to analyze, prioritize, and track

requirements.

11. Utilize peer reviews and inspections.

12. Consider the use of formal methods when appropriate.

The quantity of high-level system requirements for a large system should

be on the order of 50 to 200 requirements, not in the thousands (based on Ivy

Hooks’s experience in supporting requirements efforts at the National Aeronautics

and Space Administration for several years). Requirements should be documented

graphically and textually and should be made visible to all stakeholders. One way to

accomplish this is to invite stakeholders to participate in requirements reviews. A

requirements review is a workshop involving the key stakeholders of a project for a

short, intensive session that focuses on the definition or review of requirements for

the project. Ideally, it is facilitated by an experienced outside facilitator or by a team

member who can objectively process inputs and feedback.

Let’s review each of these recommendations in turn.

Invest More in the Requirements Process

Many people think of the requirements process as being primarily limited to

requirements management, that is, tracking the status and change activity associ-

ated with requirements and tracing requirements to the various activities and

products of the development effort. Projects expend an estimated 2% to 3% of

total project costs on this activity.4 It is advantageous to define the requirements

process more broadly and to expend 8% to 14% of total program costs on it.

Special emphasis should be placed on joint user and supplier responsibility for

requirements, getting to the real requirements, and controlling changes to

requirements.

We know from experience that buyers most often provide suppliers of sys-

tems a definition of their requirements (“stated requirements”). This definition

60 Define the Real Customer Needs

4Rob Sabourin notes from his extensive consulting work that it is amazing how many organi-

zations and companies do not have any requirements process (comment included in

Sabourin’s review of this manuscript).

may be provided in the form of a statement of work, a Request for Proposal, a

requirements document, a background description of a problem or need, and in

other formats or combinations thereof. Buyers often have strong beliefs about

their requirements documents and are strongly committed to their accuracy and

validity. The reasons for this are easy to understand: Our customers have a lot of

experience in their work and much expertise concerning it. They have spent a lot

of time and money developing these artifacts. Often, the time spent in internal

meetings discussing requirements and working out details about them clarifies,

in the minds of the involved individuals, the specific details and characteristics.

However, we note that almost always there are differences of opinion within a

customer organization concerning important aspects of some of these details. It

may be that the person writing the requirements in the customer’s organization

is not the person who is the intended user. Also, experience has shown that people

with strong technical skills are not always effective communicators or writers.

Perhaps a valid criticism of work in our industry is that we often accept these

artifacts as being complete and accurate and proceed with the task of responding

to these requirements—that is, of designing and developing an approach to meet

the stated requirements.

Experience suggests that we would be well advised to conduct partnering

workshops and requirements reviews; to apply other mechanisms, methods, tech-

niques, and tools; and to undertake a concerted effort in partnership with our

customers to discover and evolve the real requirements.5 A typical e-commerce

application is required to be compatible with things that do not yet exist, implying

that developers must be able to hot swap software.6

Recommendations to Facilitate Getting to the Real Requirements 61

5Goguen regards requirements as “emergent, in the sense that they do not already exist, but

rather emerge [emphasis added] from interactions between the analyst and the client organiza-

tion.” This is useful because conventional methods of requirements elicitation often assume

that users know (1) exactly what they want from a future system and (2) how this system, once

implemented, will affect the way they work. Common sense tells us these are not known in the

early stages of any effort. See Jirotka and Goguen, Requirements Engineering: Social and
Technical Issues, p. 194.

6Hot swap is a term taken from the hardware world. It means one can take out a board or com-

ponent while the system is running and replace it with a new one without shutting down the

system. For e-commerce systems we often use multiple servlets/server applications. To “hot

swap” is to replace one of them without shutting down the e-commerce site and without losing

a transaction. Some software engineering applications should ensure that components are

designed to permit “hot swapping.” This allows for reaction to new and evolving requirements

without shutting down a system.

Some data from industry experience will clarify this point. It’s preferable to

utilize available data whenever possible to make decisions rather than to rely on

intuition, experience, or the suggestions of others. We should “manage by fact.”

Figure 4-1 shows the effect of investment in a requirements process on total pro-

gram costs. These data were provided by Werner M. Gruehl, Chief, Cost &

Economic Analysis Branch, National Aeronautics and Space Administration head-

quarters, and were reported by Ivy Hooks.7 Note that projects that spent less than

5% of total project or program costs on the requirements process experienced an

80% to 200% cost overrun, whereas those that invested 8% to 14% experienced

less than a 60% overrun. These data provide a powerful message to PMs and

requirements practitioners: An expenditure of 8% to 14% of total program costs

on the requirements process results in the best outcomes as measured by total pro-

gram costs.

Train PMs to Pay More Attention to the Requirements Process

Hooks addresses another key issue in her paper “Why Don’t Program and Project

Managers (PMs) Pay More Attention to the Requirements and the Requirements

62 Define the Real Customer Needs

7Hooks, Managing Requirements, pp. 1–2.

80

60

40

0

OMV

20

100

120

140

160

180

200

GRO 78

TDRSS

TETH

COBE

IRAS

MAG

MARS
ACT

CEN

GOES I-M

0 5 10 15 20 25

LAND 76

GALL

HST

ISEE

HEAO

VOYAGER

LAND 78
GRO 82

STS

ERB 80

ERB 77

SEASAT

DE SMM

UARS EUVE/EP
0
ULYSSES

PION/VEN

<5% on Requirements Process
80%–200% Overrun

8–14% on Requirements Process
<60% Overrun

P
er

ce
nt

ag
e

of
 C

os
t O

ve
rr

un

Percentage of Requirements Process Investment

Figure 4-1 Effect of Requirements Process Investment on Program Costs

Process?” From her 30 years of experience in consulting concerning requirements,

she concludes the following:

• PMs assume that everyone knows how to write good requirements, thus the

requirements process “will take care of itself.”

• PMs tend to come from a technical background and tend to focus on the

nontechnical aspects of the program because these are new and alien.

• PMs know they do not fully understand budgets, so more attention goes to

budgets.

• The PM’s boss is focused on the budget, so the PM places more attention on

what interests the boss.

This analysis is consistent with my experience. It is my sincere hope that one

use of this book will be to provide practitioners the experience and data to

encourage PMs to provide adequate funding for requirements-related activities

and to pay close attention to the requirements and the requirements process.8

This is obviously an issue that needs to be addressed in corporate and organiza-

tional training programs for PMs.

Steve McConnell9 advocates that technical managers should have tools for

five kinds of work: estimating, planning, tracking, managing risk, and measur-

ing. He also observes that management skills have at least as much influence on

development success as technical skills.

Identify a Project Champion

Among the industry experts in requirements engineering are Dean Leffingwell

and Don Widrig of Rational Corporation. Their recent book, Managing Software

Requirements, is highly recommended. It presents a very useful approach that is

focused on utilizing trained teams to perform systems development activities.

Chapter 18 of Managing Software Requirements, The Champion, provides an

excellent discussion of the need for and role of a champion. In their experience

Recommendations to Facilitate Getting to the Real Requirements 63

8SECAT LLC publishes a set of four pocket guides, each designed for a person with specific job

responsibilities: the PM, an organizational leader, a system engineer, and one who facilitates

performing microassessments (measuring projects against a framework). Each pocket guide

provides a series of questions designed to help keep the project on track. A scorecard is pro-

vided for each pocket guide to facilitate the tracking progress of improvement activities. The

questions in the pocket guides are a distillation of the practices found in the Systems

Engineering Capability Maturity Model (SE-CMM), an industry framework for systems engi-

neering improvement and measurement. See http://www.secat.com; e-mail, secat@secat.com.

9“The Software Manager’s Toolkit,” IEEE Software.

during the past 20 years, a champion was identified in virtually every successful

project in which they were involved.10 Figure 4-2 summarizes this role.

Define the Project Vision and Scope

The project vision and scope document describes the background leading to

the decision to develop a new or modified system and provides a description of

the system that will be extended by the work of the project. (In Canada, the terms

manifest and rules of engagement are used. Manifest is in used in place of the proj-

ect charter or the project vision document. The rules of engagement are a descrip-

tion of the roles and responsibilities for project decision makers, including

64 Define the Real Customer Needs

10Leffingwell and Widrig, Managing Software Requirements, p. 179.

Figure 4-2 The Role of the Champion

• Manage the elicitation process and become comfortable when enough

requirements are discovered.

• Manage the conflicting inputs from all stakeholders.

• Make the trade-offs necessary to find the set of features that delivers

the highest value to the greatest number of stakeholders.

• Own the product vision.

• Advocate for the product.

• Negotiate with management, users, and developers.

• Defend against feature creep.

• Maintain a “healthy tension” between what the customer desires and

what the development team can deliver in the release time frame.

• Be the representative of the official channel between the customer

and the development team.

• Manage the expectations of customers, executive management, and

the internal marketing and engineering departments.

• Communicate the features of the release to all stakeholders.

• Review the software specifications to ensure that they conform to the

true vision represented by the features.

• Manage the changing priorities and the addition and deletion of

features.

requirement prioritization and escalation procedures.) It is based on the business

requirements, and it specifies objectives and priorities. This facilitates a common

understanding and communication of the scope of the system that is critical for

success. The executive sponsor of the project owns the document.

Figure 4-3 provides a suggested table of contents for an operational concept

definition (OCD) document, taken from J-STD-016, the successor standard to

DoD-STD-2167A (1988) and MIL-STD-498 (1994). The idea is to create docu-

mentation that follows a similar format to facilitate gathering information con-

cerning a planned development effort. Don’t feel that you must address every

topic in this template. Rather, tailor it for your project environment and needs.

Note that the OCD (or whatever you choose to call it) addresses

• The scope of the planned effort by providing a system overview

• Documents (references) that provide background and related information

• The current system or situation; in other words, how the planned need is

being met (or not) currently

• The justification for the planned development effort. What is it that requires

an investment in developing a new system?

• The concept or vision for a new or modified system

• Anticipated impacts of the new system. How will having a new system affect

operations and the organization?

• Advantages and limitations of the new system and alternative approaches that

were considered

Other excellent references that provide guidance for this work include books

by Leffingwell and Widrig11 and by Wiegers.12 Figure 4-4 is a template for a vision

and scope document provided by Wiegers. This template is simpler than the DoD

standard and may be sufficient for your needs.

Identify a Requirements Engineer and Utilize Domain Experts to

Perform Requirements Engineering Tasks

My experience is that a project of any size requires an individual assigned as the

requirements engineer. Depending on the size of the project, this may be a part-

time assignment or may require the full-time effort of several people. It’s valuable

Recommendations to Facilitate Getting to the Real Requirements 65

11Leffingwell and Widrig, Managing Software Requirements, pp. 187–222.

12Wiegers, Software Requirements, pp. 95–108.

66 Define the Real Customer Needs

Operational Concept Description (OCD)

Contents

1. Scope

1.1 Identification

1.2 System overview

1.3 Document overview

2. Referenced documents

3. Current system or situation

3.1 Background, objectives, and scope

3.2 Operational policies and constraints

3.3 Description of current system or situation

3.4 Users or involved personnel

3.5 Support strategy

4. Justification for and nature of changes

4.1 Justification for change

4.2 Description of needed changes

4.3 Priorities among the changes

4.4 Changes considered but not included

4.5 Assumptions and constraints

5. Concept for a new or modified system

5.1 Background, objectives, and scope

5.2 Operational policies and constraints

5.3 Description of the new or modified system

5.4 Users/affected personnel

5.5 Support strategy

6. Operational scenarios

7. Summary of impacts

7.1 Operational impacts

7.2 Organizational impacts

7.3 Impacts during development

8. Analysis of the proposed system

8.1 Summary of advantages

8.2 Summary of disadvantages/limitations

8.3 Alternatives and trade-offs considered

9. Notes

A. Annexes

Figure 4-3 Suggested Table of Contents for an OCD

Recommendations to Facilitate Getting to the Real Requirements 67

1. Scope. This clause should be divided into the following subclauses:

1.1 Identification. This subclause shall contain a full identification of

the system to which this document applies, including, as appli-

cable, identification number(s), title(s), abbreviations(s), version

number(s), and release number(s).

1.2 System overview. This subclause shall briefly state the purpose

of the system to which this document applies. It shall describe the

general nature of the system; summarize the history of system

development, operation, and maintenance; identify the project

sponsor, acquirer, user, developer, and maintenance organiza-

tions; identify current and planned operating sites; and list other

relevant documents.

1.3 Document overview. This subclause shall summarize the purpose

and contents of this document and shall describe any security or

privacy protection considerations associated with its use.

2. Referenced documents. This clause shall list the number, title, revi-

sion, date, and source of all documents referenced in this manual.

3. Current system or situation. This clause should be divided into the fol-

lowing subclauses to describe the system or situation as it currently

exists.

3.1 Background, objectives, and scope. This subclause shall describe

the background, mission or objectives, and scope of the current

system or situation.

3.2 Operational policies and constraints. This subclause shall describe

any operational policies and constraints that apply to the current

system or situation.

3.3 Description of current system or situation. This subclause shall

provide a description of the current system or situation, identify-

ing differences associated with different states or modes of oper-

ation (for example, regular, maintenance, training, degraded,

emergency, alternative-site, wartime, peacetime). The distinction

between states and modes is arbitrary. A system may be described

in terms of states only, modes only, states within modes, modes

within states, or any other scheme that is useful. If the system

operates without states or modes, this subclause shall so state,

(continued)

68 Define the Real Customer Needs

without the need to create artificial distinctions. The description

shall include, as applicable:

a. The operational environment and its characteristics

b. Major system components and the interconnections among

these components

c. Interfaces to external systems or procedures

d. Capabilities/functions of the current system

e. Charts and accompanying descriptions depicting input, output,

data flow, and manual and automated processes sufficient to

understand the current system or situation from the user’s

point of view

f. Performance characteristics, such as speed, throughput, vol-

ume, frequency

g. Quality attributes, such as reliability, maintainability, availabil-

ity, flexibility, portability, usability, efficiency

h. Provisions for safety, security, privacy protection, and continu-

ity of operations in emergencies

3.4 Users or involved personnel. This subclause shall describe the

types of users of the system, or personnel involved in the cur-

rent situation, including, as applicable, organizational structures,

training/skills, responsibilities, activities, and interactions with

one another.

3.5 Support strategy. This subclause shall provide an overview of the

support strategy for the current system, including, as applicable

to this document, maintenance organization(s); facilities; equip-

ment; maintenance software; repair/replacement criteria; main-

tenance levels and cycles; and storage, distribution, and supply

methods.

4. Justification for and nature of changes. This clause should be divided

into the following subclauses:

4.1 Justification for change. This subclause shall

a. Describe new or modified aspects of user needs, threats, mis-

sions, objectives, environment, interfaces, personnel, or other

factors that require a new or modified system

Figure 4-3 Suggested Table of Contents for an OCD (continued)

Recommendations to Facilitate Getting to the Real Requirements 69

b. Summarize deficiencies or limitations in the current system or

situation that make it unable to respond to these factors

4.2 Description of needed changes. This subclause shall summarize

new or modified capabilities/functions, processes, interfaces, or

other changes needed to respond to the factors identified in 4.1.

4.3 Priorities among the changes. This subclause shall identify pri-

orities among the needed changes. It shall, for example, identify

each change as essential, desirable, or optional, and prioritize the

desirable and optional changes.

4.4 Changes considered but not included. This subclause shall iden-

tify changes considered but not included in 4.2, and rationale for

not including them.

4.5 Assumptions and constraints. This subclause shall identify any

assumptions and constraints applicable to the changes identified

in this clause.

5. Concept for a new or modified system. This clause should be divided

into the following subclauses to describe a new or modified system:

5.1 Background, objectives, and scope. This subclause shall describe

the background, mission or objectives, and scope of the new or

modified system.

5.2 Operational policies and constraints. This subclause shall describe

any operational policies and constraints that apply to the new or

modified system.

5.3 Description of the new or modified system. This subclause

shall provide a description of the new or modified system, identi-

fying differences associated with different states or modes of

operation (for example, regular, maintenance, training, degraded,

emergency, alternative-site, wartime, peacetime). The distinction

between states and modes is arbitrary. A system may be described

in terms of states only, modes only, states within modes, modes

within states, or any other scheme that is useful. If the system

operates without states or modes, this subclause shall so state,

without the need to create artificial distinctions. The description

shall include, as applicable:

(continued)

70 Define the Real Customer Needs

a. The operational environment and its characteristics

b. Major system components and the interconnections among

these components

c. Interfaces to external systems or procedures

d. Capabilities/functions of the new or modified system

e. Charts and accompanying descriptions depicting input, output,

data flow, and manual and automated processes sufficient to

understand the new or modified system or situation from the

user’s point of view

f. Performance characteristics, such as speed, throughput, vol-

ume, frequency

g. Quality attributes, such as reliability, maintainability, availabil-

ity, flexibility, portability, usability, efficiency

h. Provisions for safety, security, privacy protection, and continu-

ity of operations in emergencies

5.4 Users/affected personnel. This subclause shall describe the types

of users of the new or modified system, including, as applicable,

organizational structures, training/skills, responsibilities, and inter-

actions with one another.

5.5 Support strategy. This subclause shall provide an overview of

the support strategy for the new or modified system, including,

as applicable, maintenance organization(s); facilities; equipment;

maintenance software; repair/replacement criteria; maintenance

levels and cycles; and storage, distribution, and supply methods.

6. Operational scenarios. This clause shall describe one or more opera-

tional scenarios that illustrate the role of the new or modified system,

its interaction with users, its interface to other systems, and all states

or modes identified for the system. The scenarios shall include events,

actions, stimuli, information, interactions, etc., as applicable. Refer-

ences may be made to other media, such as videos, to provide part or

all of this information.

7. Summary of impacts. This clause should be divided into the following

subclauses:

Figure 4-3 Suggested Table of Contents for an OCD (continued)

Recommendations to Facilitate Getting to the Real Requirements 71

7.1 Operational impacts. This subclause shall describe anticipated

operational impacts on the user, acquirer, developer, and mainte-

nance organizations. These impacts may include changes in inter-

faces with computer operating centers; change in procedures; use

of new data sources; changes in quantity, type, and timing of data

to be input to the system; changes in data retention requirements;

and new modes of operation based on peacetime, alert, wartime,

or emergency conditions.

7.2 Organizational impacts. This subclause shall describe anticipated

organizational impacts on the user, acquirer, developer, and main-

tenance organizations. These impacts may include modification

of responsibilities; addition or elimination of responsibilities or

positions; need for training or retraining; and changes in number,

skill levels, position identifiers, or location of personnel in various

modes of operation.

7.3 Impacts during development. This subclause shall describe antic-

ipated impacts on the user, acquirer, developer, and maintenance

organizations during the development effort. These impacts may

include meetings/discussions regarding the new system; develop-

ment or modification of databases; training; parallel operation of

the new and existing systems; impacts during testing of the new

system; and other activities needed to aid or monitor development.

8. Analysis of the proposed system. This clause should be divided into

the following subclauses:

8.1 Summary of advantages. This subclause shall provide a qualita-

tive and quantitative summary of the advantages to be obtained

from the new or modified system. This summary shall include

new capabilities, enhanced capabilities, and improved perfor-

mance, as applicable, and their relationship to deficiencies identi-

fied in 4.1.

8.2 Summary of disadvantages/limitations. This subclause shall pro-

vide a qualitative and quantitative summary of disadvantages or

limitations of the new or modified system. These disadvantages

and limitations shall include, as applicable, degraded or missing

(continued)

for those assigned in this role to have had extensive experience and expertise in the

functional area being addressed by the planned system (domain experts or subject

matter experts [SMEs]). The reason for utilizing domain experts as requirements

engineers is that the requirements need to be understood in the customer’s con-

text. This is an extremely important issue. Unfortunately, many projects cripple

their requirements efforts by not providing domain experts. This is a false econ-

omy. It may be that a project can have the domain expert assume the role of the

project champion.

SMEs can be found by recruiting experienced developers from other projects

within your organization. Another source is professional staff departing cus-

tomer organizations for reasons of retirement or a desire for a new opportunity.

SMEs function as a critical part of the team by understanding and explaining the

72 Define the Real Customer Needs

capabilities, degraded or less-than-desired performance, greater-

than-desired use of computer hardware resources, undesirable

operational impacts, conflicts with user assumptions, and other

constraints.

8.3 Alternatives and trade-offs considered. This subclause shall

identify and describe major alternatives considered to the system

or its characteristics, the trade-offs among them, and rationale

for the decisions reached.

9. Notes. This clause shall contain any general information that aids in

understanding this document (e.g., background information, glossary,

rationale). This clause shall include an alpabetical listing of all acronyms,

abbreviations, and their meanings as used in this document and a list

of any terms and definitions needed to understand this document.

A. Annexes. Annexes may be used to provide information published

separately for convenience in document maintenance (e.g., charts,

classified data). As applicable, each annex shall be referenced in the

main body of the document where the data would normally have

been provided. Annexes may be bound as separate documents for

ease in handling. Annexes shall be lettered alphabetically (A, B, etc.).

Figure 4-3 Suggested Table of Contents for an OCD (continued)

context of the requirements for the planned system.13 SMEs can determine,

based on their experience, whether the requirements are reasonable, how they

extend the existing system, how the proposed architecture should be designed,

and the impacts on users, among other areas. This approach enables the require-

ments engineering tasks to be performed more effectively.

A pitfall for which to watch is an SME whose approach is inflexible. An SME

who can assist most effectively is one who is open to new ideas, approaches, and

technologies.

Recommendations to Facilitate Getting to the Real Requirements 73

1. Business Requirements

1.1 Background

1.2 Business Opportunity

1.3 Business Objectives

1.4 Customer or Market Requirements

1.5 Value Provided to Customers

1.6 Business Risks

2. Vision of the Solution

2.1 Vision Statement

2.2 Major Features

2.3 Assumptions and Dependencies

3. Scope and Limitations

3.1 Scope of Initial Release

3.2 Scope of Subsequent Releases

3.3 Limitations and Exclusions

4. Business Context

4.1 Customer Profiles

4.2 Project Priorities

5. Product Success Factors

Figure 4-4 Template for a Vision and Scope Document

13Sabourin notes that it is very difficult in some domains to locate knowledge experts who are

able to express requirements clearly. In these situations, a role of the requirements engineer is

to map domain expert input to clear requirements. (Comment included in Sabourin’s review

of this manuscript.)

Train Developers Not to Make Requirements Decisions and Not to Gold Plate

On a small project, the requirements engineer may also be a programmer (devel-

oper). On larger projects, we typically have individuals assigned in the developer

role. Developers often find themselves in the situation of being required to

design and code capabilities for systems when the requirements are not well

defined (look ahead to Figure 4-9 for the criteria for a good requirement). Faced

with this decision, the easier action is to make some assumptions and keep work-

ing, particularly in the face of tight deadlines and unpaid overtime. A better

choice would be to interrupt work and get the requirement clarified. Developers

need to be trained that this choice is best (and expected). Such “training” needs

to be conveyed with good judgment so that technical performers do not feel that

they are being overly constrained. Developers who are accustomed to an undisci-

plined environment may take exception to having to conform to rules. A related

problem is a developer who adds features and capabilities that are not required

by the specification (gold plating). This may be done because the developer sin-

cerely believes it is appropriate and “best” for all concerned. However, gold plat-

ing adds to costs and extends the schedule and may complicate other areas of the

system. If a user noticed this feature or capability in one area of the system, he

might decide that it should be provided throughout the system! This contributes

to requirements creep and results in added costs.

Utilize a Variety of Techniques to Elicit Customer and

User Requirements and Expectations

There is extensive information available in the system and software engineering

literature concerning requirements elicitation—that is, the effort undertaken by

systems and software requirements engineers to understand customer needs and

expectations.14

Leffingwell and Widrig15 provide an insightful discussion of useful tech-

niques and tools to elicit user requirements and expectations in their book.

These techniques and tools include interviewing, questionnaires, requirements

74 Define the Real Customer Needs

14See Sommerville and Sawyer, Requirements Engineering: A Good Practice Guide. Another

source is Gause and Weinberg’s Exploring Requirements: Quality Before Design, which provides

a thorough discussion of the issues related to elicitation of user needs from customers and

users.

15See Leffingwell and Widrig, Managing Software Requirements, Chapters 7 through 15, which

provide guidelines for understanding user needs.

workshops, brainstorming and idea reduction, storyboards, use cases, role play-

ing, and prototyping.16

Requirements checklists provide a way to evaluate the content, completeness,

and quality of the requirements prior to development. McConnell17 provides a

good checklist in Code Complete, and Wiegers18 provides another for inspection

of software requirements specifications at his Web site. If the requirements are

explicit, the users can review them and agree to them. If they’re not, the develop-

ers will end up making requirements decisions during coding, a sure-fire recipe

for problems, as discussed earlier. Weinberg, in The Secrets of Consulting, provides

helpful advice concerning giving and getting advice successfully.

Use Cases

One requirements technique is the use case. Schneider and Winters19 provide a

practical approach. See Figure 4-5 for an example of a use case diagram utilizing

the Unified Modeling Language (UML) notation. UML is a graphical language for

visualizing, specifying, constructing, and documenting the artifacts of a software-

intensive system that was adopted by the Object Management Group in late 1997.

UML has become a vendor-independent standard for expressing the design of soft-

ware systems and is being rapidly adopted throughout industry. UML incorporates

use cases as the standard means of capturing and representing requirements.

Many developers believe that use cases and scenarios facilitate team commu-

nication. They provide a context for the requirements by expressing sequences of

events and a common language for end users and the technical team. They iden-

tify system interfaces, enable modeling the system graphically and textually,

and are reusable in test and user documentation. Rumbaugh20 also provides a

helpful approach in “Getting Started: Using Use Cases to Capture Requirements.”

Recommendations to Facilitate Getting to the Real Requirements 75

16See Connell and Shafer, Structured Rapid Prototyping, for a discussion of the benefits of rapid

prototyping, tools, and techniques that can be used, and other practical aspects of building

prototypes and evolving them into production systems. See also Kaplan et al., Secrets of
Software Quality, pp. 265–269.

17McConnell, Code Complete, pp. 32–34.

18Available at http://www.processimpact.com/goodies.shtml.

19Geri Schneider and Jason P. Winters, Applying Use Cases: A Practical Guide.

20James Rumbaugh, “Getting Started: Using Use Cases to Capture Requirements.” Journal of
Object-Oriented Programming.

76 Define the Real Customer Needs

Inventory
System

Clerk

Shipping
Company

Inventory
System

Accounting
System

Customer

Customer
Rep

Customer
Support
Manager

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Give Product
Information

Place
Order

Update Product
Quantities

Return
Product

Update
Account

Cancel Order

Login

Run Sales
Report

Get Status
on Order

Send
Catalog

Register
Complaint

Back-ordered
Items Received

Give Product
Information

Update Product
Quantities

Fill and
Ship Order

Figure 4-5 Example of a Use Case Diagram

Leffingwell and Widrig21 provide checklists concerning use cases. Eman Nasr22

has provided an easy-to-understand basic introduction in his Use Case Technique

for Requirements Engineering. Wiegers’s23 view is that use cases alone often don’t

provide enough detail for developers to know just what to build.

Consideration should be given to using use cases to describe the outwardly

visible requirements of a system.24 Use cases allow analysts to identify the

required features of a system. They describe the things users of a system want the

system to do (sometimes referred to as scenarios). Use cases are especially helpful

for processes that are iterative and risk driven (which helps identify and address

risks early in the program). The high-level use cases should be developed to help

determine the scope of the project. What should be included? What can we real-

istically accomplish given our schedule and budget?25 The developed use cases

can also be utilized as test cases.

As with any method, there are both advantages and disadvantages of using

use cases as a method. Among the advantages is that because of the thread of

behavior characteristics and the fact that UML includes certain specialized mod-

eling elements and notations (for example, “use case realization”), use cases pro-

vide additional value to their role of linking the requirements activities to design

and implementation. Among the disadvantages is that use cases are not good

Recommendations to Facilitate Getting to the Real Requirements 77

21Managing Software Requirements, pp. 289–292.

22Nasr is associated with the Computer Science Department, University of York, in the United

Kingdom. E-mail: Eman.Nasr@cs.york.ac.uk.

23Karl Wiegers, “10 Requirements Traps to Avoid.” Software Testing and Quality Engineering
Magazine. In addition to describing ten important requirements traps, Wiegers provides keys

to excellent requirements, including a collaborative customer-developer partnership for

requirements development and management, and prioritizing requirements.

24Another good reference is by Daryl Kulak and Eamonn Guiney, Use Cases: Requirements in
Context, which explains and provides examples of the nine diagrams of the UML (use case dia-

gram, sequence diagram, collaboration diagram, statechart diagram, activity diagram, class

diagram, object diagram, component diagram, and deployment diagram). They also provide a

comprehensive and thoughtful list of problems related to using use cases (pp. 154–165). See

also Korson, The Misuse of Use Cases. Korson notes that projects can expend a lot of time and

effort on use cases without much benefit when they are not used correctly. Root causes of the

misuse of use cases are (1) a requirements process that is neither understood nor properly

managed, (2) poor-quality requirements, and (3) poor-quality designs. Analysts sometimes

neglect fundamental principles of requirements gathering in the name of use cases.

25A reference point based on industry data is that systems and software projects are over-

promised by an average of 100% to 200% (The Standish Group, 8,000 projects, 1996).

containers for nonfunctional requirements (such as the-ilities and attributes

of the system environment) and design constraints. Dean Leffingwell’s book,

Managing Software Requirements, recommends alternative approaches based on

the experience of the project team. In the situation in which the team’s experi-

ence with the requirements process is limited and the object-oriented (OO) par-

adigm has not been adopted and used, a conventional software requirements

specification approach is recommended.26 If the team’s experience with the

requirements process is limited but the team is in the process of adopting the OO

paradigm, the recommendation is to work with the use case method but to mas-

ter it fully before depending on it to represent the requirements.

As noted earlier, the developed use cases can also be utilized as test cases. Bob

Poston, Director of Quality Assurance Technology at Aonix, Inc., advocates front-

end testing or specification testing to achieve defect prevention in a requirements

process.27 Poston asserts that project time and resources allocated to testing (typi-

cally 30% or more28) can be dramatically reduced, and he recommends adding

formality to the requirements phase using a requirements modeling tool and use

case notation and scenarios. Provide system-level use cases and then object-level

use cases for the design. Add sufficient information to the use case to make it test

ready. Poston notes (based on data from Capers Jones) that typically 16% of the

test cases are redundant and 10% are irrelevant; therefore, in a typical project,

26% of the test effort is wasted. We need to develop requirements specifications

that have in them the data that allow primary specification based test design.

Poston cited two examples in his presentation, one in which the defect count

dropped 94%29 and another in which productivity increased 100 fold from 100

test cases in 20 days to 1,000 test cases in 2 days.30

78 Define the Real Customer Needs

26See the Institute of Electrical and Electronics Engineers’ (IEEE) Standard 830, IEEE Recom-
mended Practice for Requirements Specifications.
27See his presentation from the National SEPG99 Conference, Generating Test Cases from Use
Cases Automatically, March 1999.

28Capers Jones, Software Quality: Analysis and Guidelines for Success, p. xxiv. Watts Humphrey’s

experience is that testing typically removes only 50% of the errors present. You must have

quality code going into testing to have quality code coming out (personal e-mail communica-

tion with Humphrey, April 17, 2000).

29Robert M. Poston. “Counting Down to Zero Software Failures,” p. 230.

30Richard Adhikari, “Development Process Is a Mixed-Bag Effort.”

In summary, my experience is that use of a common set of techniques and tools

among all parties involved in a particular project is a much bigger help than one

would imagine, because this enables the entire development team to share the same

concepts and language. This is more easily recommended than accomplished, how-

ever. Each system and software engineer has her/his own experience and familiar-

ity with a set of tools. It’s human nature to like to use that with which each of us is

most familiar. Getting consensus on the use of a specific set of methods and tools

is difficult, and providing the training and the opportunity to use them and

become very familiar with their capabilities is expensive and time-consuming.

(Also, recall the comments I provided at the end of Chapter 1 concerning systems

and software engineers and the recommended context for readers of this book.)

Train Requirements Engineers to Write Good Requirements

There is strong evidence of the value of utilizing trained requirements engineers.

Trained requirements engineers correlate with

• Well-written, unambiguous requirements statements

• The ability to utilize an effective automated requirements tool

• More effective use of project resources because of reduced rework

The Impact of Requirements Errors

Industry research shows that requirements errors are both the most common

and also the most expensive defects in the technical work. Figure 4-6 quantifies

the typical types of requirements errors.

Hooks and Farry31 report that more than 80% of all product defects are

inserted in the requirements definition stage of product development. This

means that we can save money! If we provide good requirements, we can elimi-

nate 80% of the rework problems. Rework costs are estimated at 45% of total

project costs.32 Thus, by taking 80% of 45%, we learn that 36% (more than one

third) of total project costs (based on industry data) potentially can be avoided by

driving requirements errors out of the work products. I’ll acknowledge that it would

Recommendations to Facilitate Getting to the Real Requirements 79

31Customer-Centered Products, p. 3.

32Leffingwell, “Calculating Your Return Investment from More Effective Requirements Man-

agement,” p. 3. Available at http://www.rational.com/products/whitepapers/300.jsp. Rational

Corporation. Available at http://www.rational.com/index.jtmpl.

be difficult to achieve this amount of savings. However, clearly a significant por-

tion of this waste should be redirected by any and every development effort through

use of the practices recommended in this book and other process improvements.

From the perspective of the PM, the savings achieved by employing effective require-

ments practices should be redirected to pay for the needed effort and any associated

training, methods, techniques, and tools required.

The Importance of Requirements to Program Costs

Managers would be well advised to take careful note of the relative cost to fix an

error. Barry Boehm33 analyzed 63 software development projects in corporations

such as IBM, GTE, and TRW and determined the ranges in cost for the error

types described earlier that were created by false assumptions in the require-

ments phase but not detected until later phases (Figure 4-7).

Figure 4-8 shows the value of investing in an effective requirements process

in which the real requirements are identified and in which requirements errors

are driven out of the requirements work products during the earliest possible

phase of system development. The cost to repair a requirements defect costs

80 Define the Real Customer Needs

33See Barry W. Boehm, Software Engineering Economics. These figures actually may be conserv-

ative because Boehm studied only those projects that were completed. See Gause and

Weinberg, Exploring Requirements: Quality Before Design, for a discussion of the cost of ambi-

guity and how to remove it (pp. 17–21).

2% Other

49% Incorrect Fact

2% Misplaced Requirement
5% Ambiguity

29% Omission

13% Inconsistency

Figure 4-6 Types of Nonclerical Requirements Errors

more the later in the project life cycle the error is discovered. For example, it costs

15 to 40 times as much to correct a requirements error during development test-

ing than if we resolve the error earlier. This is a very strong argument for invest-

ing more in the requirements process.

Recommendations to Facilitate Getting to the Real Requirements 81

Phase in Which the Error Is Found Cost Ratio

Requirements 1

Design 3–6

Coding 10

Development Testing 15–40

Acceptance Testing 30–70

Operation 40–1,000

Figure 4-7 Relative Cost to Fix an Error

1,000

60

50

40

30

20

10

0
Requirements

Phase
Design
Phase

Coding
Phase

Development
Testing

Acceptance
Testing

Operations

1,000

4040

70

30

15

1 3 6
10

C
os

t (
un

its
)

Figure 4-8 Relative Cost to Fix Requirements Defects When Discovered in
Later Stages

What Is a Good Requirement?

There are several good articles and white papers on what is considered a good

requirement.34 Figure 4-9 presents a summary checklist of the criteria for a good re-

quirement, providing criteria and a description of each.

82 Define the Real Customer Needs

Criterion Description

Necessary Can the system meet prioritized, real
needs without it? If yes, the requirement
isn’t necessary.

Verifiable Can one ensure that the requirement is
met in the system? If not, the requirement
should be removed or revised. Note: The
verification method and level at which the
requirement can be verified should be
determined explicitly as part of the devel-
opment for each of the requirements. (The
verification level is the location in the
system where the requirement is met (for
example, the “system level,” the “segment
level,” and the “subsystem level).35

Attainable Can the requirement be met in the system
under development?

Unambiguous Can the requirement be interpreted in
more than one way? If yes, the require-
ment should be clarified or removed.
Ambiguous or poorly worded writing can
lead to serious misunderstandings and

Figure 4-9 Criteria of a Good Requirement

34See the Compliance Automation Web site at http://www.complianceautomation.com/ to

access excellent papers concerning requirements. Several are required reading for anyone seri-

ously involved with requirements: Guide for Managing and Writing Requirements, which is a

thorough treatment; Writing Good Requirements, which provides helpful hints to avoid many

of the most common requirements writing problems; Characteristics of Good Requirements,
which describes major characteristics of well-defined requirements, and Managing Require-
ments, which provides important insights into the requirements process. The greeting at this

Web site reflects the wisdom of extensive experience: “People who write bad requirements

should not be surprised when they get bad products, but they always are!”

35See Grady, System Validation and Verification, pp. 101–102, for a discussion of verification levels.

Recommendations to Facilitate Getting to the Real Requirements 83

Criterion Description

needless rework. Note: Specifications
should include a list of acronyms and a
glossary of terms to improve clarity.

Complete Are all conditions under which the
requirement applies stated? Also, does
the specification document all known
requirements? (Requirements are typically
classified as functional, performance,
interface, constraints, and environment.)

Consistent Can the requirement be met without
conflicting with all other requirements? If
not, the requirement should be revised or
removed.

Traceable Is the origin (source) of the requirement
known, and can the requirement be refer-
enced (located) throughout the system?
The automated requirements tool should
enable finding the location in the system
where each requirement is met.

Allocated Can the requirement be allocated to an
element of the system design where it can
be implemented? If not, the requirement
needs to be revised or eliminated.36

Concise Is the requirement stated simply and
clearly?

Implementation free The requirement should state what must
be done without indicating how. The
treatment of interface requirements is
generally an exception.

Standard constructs Requirements are stated as imperative
needs using “shall.” Statements indicating
“goals” or using the word “will” are not
imperatives.

Unique identifier Each requirement should have a unique
identifying number that assists in identifi-
cation, maintaining change history, and
providing traceability.

36The alternative is to risk a major costly change in the system or software architecture.

A “good” requirement is not necessarily a “real” requirement. The require-

ment may meet our criteria for a good requirement, but the requirement may

not meet a real need of the users of the planned system. We discover the real

requirements by following the recommendations provided in this chapter.

Oliver and colleagues37 provide a good requirements taxonomy and believe

that the engineering effort and costs associated with assessing requirements can

be reduced substantially with modeling.

Document the Rationale for Each Requirement

Industry sources indicate that by taking the effort to document why each require-

ment is needed, as many as half of the “requirements” can be eliminated. The docu-

mentation step reduces the life cycle cost of system development significantly by

obviating the need for follow-on work for unnecessary requirements. The ratio-

nale describes some or all of the following related information:38

• Assumptions

• Why it is needed

• How it is related to expected operations

• Design decisions

An example of documenting the rationale for a requirement is the following:

Requirement 101 is needed in the system to enable the users of the system to

receive feedback that their request was transmitted. In documenting the rationale

for requirements, the requirements engineer may

• Gather data to enable a projection of how the activity involved may vary

depending on different circumstances and uses of the system

• Perform a trade study to determine alternative ways to address the require-

ment

• Consider alternatives and provide the basis for the selected alternative

The easiest way to capture rationale is as each requirement is written. No require-

ment should be put into the specification until its rationale is well understood.

84 Define the Real Customer Needs

37Oliver et al., Engineering Complex Systems with Models and Objects, pp. 104–115. VITECH’s

automated tool, CORE, has behavioral modeling capabilities. See http://www.vtcorp.com.

38Ivy Hooks, Guide for Managing and Writing Requirements, p. 5–4. See pp. 5–4 through 5–6 for

a more extensive discussion of why the documentation step is critical and how to do it.

Utilize Methods and Automated Tools to Analyze, Prioritize, and Track Requirements

As suggested previously, the broader term requirements process involves many

aspects of the project throughout its entire life cycle, not just “requirements

management.” However, the automated tools available today are often described

as requirements management tools. See Figure 4-10 for a list of several of the

available tools and their related Web sites. Note that the International Council on

Systems Engineering’s Tools Working Group provides information concerning

a large set of tools at its Web site, http://www.incose.org/tools/tooltax.html.

Many projects have been supported by office automation tools such as Microsoft

Word or Microsoft Excel and database applications such as Informix to manage

requirements, but these tools are relatively limited in their capabilities (although

they can provide some of the capabilities needed for a particular project). Many

organizations have developed their own requirements tools (some have devel-

oped several), but this approach is not cost-effective, given the tools available on

the market today.

A sophisticated requirements tool is able to do much more than requirements

management. It should be able to facilitate requirements elicitation, help with

prioritization of requirements, provide traceability39 of requirements throughout

the development effort (to design, implementation, and test verification, for

example) and allow for assignment of requirements to subsequent releases of sys-

tem products. It should allow assignment of an unlimited number of attributes

(characteristics of requirements) to any and all requirements. See Figure 4-11 for

a sample requirements matrix that shows attributes. Attributes allow users to

associate data with objects, table markers, table cells, modules, and projects. For

example, there are two kinds of attributes in DOORS, user-defined attributes and

system-defined attributes. User-defined attributes may be built from specific

attribute types such as text, integer, date, and so forth and are instantiated by users

for their own needs. System-defined attributes, however, are predefined by

DOORS and automatically record essential and highly useful information in the

background. Attributes allow you to associate information with individual or

related groups of requirements and often facilitate analysis of requirements data

Recommendations to Facilitate Getting to the Real Requirements 85

39Traceability gives essential assistance in understanding the relationships that exist within and

across software requirements, design, and implementation, and it is critical to the develop-

ment process. See James D. Palmer, “Traceability.” See also the definition and guidelines for

requirements traceability in Figure 9-5.

via filtering and sorting based on attribute values. System-defined attributes may

also be used for filtering and sorting. Although they are, for the most part, read-

only and are not user modifiable, they perform essential and automatic informa-

tion gathering.

86 Define the Real Customer Needs

Tool Vendor Web Site

Caliber RM Technology Builders, http://www.tbi.com
Inc., Atlanta, Georgia

C.A.R.E. 2.0 SOPHIST Group, http://www.
Nuremberg, Germany sophist.de

CORE VITECH Corporation, http://www.
Vienna, Virginia vtcorp.com

DOORS Telelogic, Malmo, http://www.
Sweden telelogic.com/doors

RDD ISEE Holagent Corporation, http://www.
Gilroy, California holagent.com

Requisite Pro (ReqPro) Rational Software http://www.
Corporation, Lexington, rational.com
Massachusetts

RTM Workshop Integrated http://www.
Chipware, Inc., chipware.com
Reston, Virginia

SLATE TD Technologies, http://www.
Richardson, Texas tdtech.com

SynergyRM CMD Corporation, http://www.
Dallas, Texas cmdcorp.com

Vital Link Compliance http://www.
Automation, Inc., compliance
Boerne, Texas automation.com

Xtie-RT Requirements Teledyne Brown http://www.
Tracer Engineering, tbe.com

Los Angeles, California

Figure 4-10 Commercial Requirements Tools, Vendors,
and Web Sites

Approaches, Tools, and Methods for Prioritizing Requirements

It’s important to be able to prioritize the system and software requirements. An

excellent discussion of this topic is provided by Karl Wiegers.40 He suggests two

scales, each with three-levels: (1) high/medium/low and (2) essential/conditional/

optional. One can visualize how utilizing these scales at an appropriate level of

abstraction (for example, the use case level, the feature level, or the functional

requirement level) will facilitate dealing with the common problem of having a lim-

ited development budget for release 1.0! Wiegers discusses his semiquantitative ana-

lytical approach and provides an example for a sample project:“Any actions we take

to move requirements prioritization from the political arena into an objective and

analytical one will improve the project’s ability to deliver the most important func-

tionality in the most appropriate order” (p. 30). This is recommended reading for

managers and requirements practitioners. Wiegers provides a set of useful tools at

his Web site, including a Microsoft Excel requirements prioritization spreadsheet.41

Another method for prioritizing requirements was developed by Karlsson

and Ryan.42 Their concern was that there are usually more requirements than can

Recommendations to Facilitate Getting to the Real Requirements 87

40Karl Wiegers, “First Things First: Prioritizing Requirements,” pp. 24–30.

41Available at http://www.processimpact.com/goodies.shtml.

42Joachim Karlsson and Kevin Ryan, “A Cost-Value Approach for Prioritizing Requirements,”

pp. 67–74.

M
ed

iu
m

A
pp

ro
ve

d

M
ed

iu
m

M
ed

iu
m

51
0

N
FA

 A
nn

ex
 K

 s
ec

tio
n

C

C
ha

rd
on

1.
00

01

9/
16

/9
9

18
:2

5

M
ar

ke
d

tr
ac

e
to

N
FA

S
S

S
28

9.

N
FA

S
S

S
28

9

20
8

P
ri

o
ri

ty

S
ta

tu
s

C
o

st

D
if

fi
cu

lt
y

S
ta

b
ili

ty

A
ss

ig
n

ed
 t

o

U
n

iq
u

e
ID

L
o

ca
ti

o
n

A
u

th
o

r

R
ev

is
io

n

D
at

e

R
ea

so
n

Tr
ac

ed
-f

ro
m

Tr
ac

ed
-t

o

R
o

o
tT

ag
#

NFAK0 Tag

NFAK0208

Requirement text

The time required
for the equipment
to warm up prior to
operation shall
not exceed one
(1) minute from
a cold start at
–20 degrees C.

Figure 4-11 Sample Requirements Attribute Matrix

be implemented given stakeholders’ time and resource constraints (sound famil-

iar?). They sought a way to select a subset of the customers’ requirements and

still produce a system that met their needs. The process they developed is

described well in the referenced article. It has been applied successfully to two

commercial projects, and these are also described. The Analytic Hierarchy Proc-

ess (AHP) is used to compare requirements pairwise according to their relative

value and cost. The approach is considered simple, fast, and accurate and yields

accurate results and holds stakeholder satisfaction as both the ultimate goal and

the guiding theme. Stakeholder satisfaction addresses maximum quality, mini-

mum costs, and short time-to-market. Karlsson and Ryan believe that this cost-

value approach is a useful first step in addressing a criticism of software

engineering for lacking the trade-off analysis that is a component of multidisci-

plinary systems engineering. They feel that this approach is similar to that of the

Quality Attribute Requirements and Conflict Consultant tool within Barry

Boehm’s WinWin system.43

Boehm has continued to evolve the WinWin Spiral Model to develop system

and software requirements and architectural solutions based on winning condi-

tions negotiated among a project’s stakeholders.44 The WinWin negotiation tool

is a UNIX workstation-based groupware support system that allows stakeholders

to enter winning conditions, explore their interactions, and negotiate mutual

agreements on the specifics of the project. The model and support system feature

a central role for quantitative trade-off analysis tools such as COCOMO. This

method is obviously more complex than the other two, but the research is a

promising effort. Many publications are available at the Web site concerning the

win-win approach.

These methods for prioritizing requirements offer a significant opportunity

to strengthen and improve your requirements process further. See the discussion

of the rationale for prioritizing requirements in Chapter 8. All requirements are

not equal—some are more important to customers and users than others. It is

the job of the system developers (the requirements engineers, specifically) in

concert with the customer to figure out how to prioritize the requirements

and how to size the development effort to meet the project budget and schedule.

The good news is that proven methods are available to help. The challenge is to

use them.

88 Define the Real Customer Needs

43See Boehm and H. In, “Identifying Quality-Requirements Conflicts,” pp. 25–35.

44Available at http://sunset.usc.edu/research/WINWIN/index.html.

Collect Requirements from Multiple Viewpoints

From our experience, we know that information about the requirements for the

planned system needs to be elicited from a variety of stakeholder perspectives.

Sommerville and Sawyer45 have provided a good discussion of this topic in their

book Requirements Engineering: A Good Practice Guide. In Chapter 13 they

describe the basic principle underlying various viewpoints. They recommend a

systematic approach called PREview (which stands for process and requirements

engineering viewpoints), developed from experience with large systems engi-

neering projects. Figure 4-12 provides an overview of how PREview checklists

Recommendations to Facilitate Getting to the Real Requirements 89

45See pp. 90–93 and 359–388. See also the Web site for this book, http://www.comp.lancs.ac.uk/

computing/resources/re-gpg/.

Identify
concerns

Elaborate
concerns

Identify
VPs

Resolve
inconsistencies

Discover
requirements

Analyze VP
interactions

Integrate
and format

Inconsistencies
Incompleteness

Viewpoints
Concerns

Key

VP = viewpoint

Discovery
Analysis
Negotiation
cycle

Requirement
promotions,
VP changes

Concerns,
Viewpoints,
External
requirements,
Requirements

Requirements
negotiation

Requirements
definition

Requirements
analysis

Requirements elicitation

Figure 4-12 The PREview Process

and tables are used when iterating requirements elicitation/discovery, require-

ments analysis, and requirements negotiation.

Viewpoint-oriented analysis is obviously more expensive than an unstruc-

tured, informal approach to requirements elicitation. However, it may prove to

be a good investment. As with any process improvement, an organization may

want to “pilot” it, using a relatively small project. As noted in a recent article by

Sommerville and colleagues,46 they believe PREview helps improve the quality of

requirements specification by providing a framework for analysis based on the

key business concerns that define the success or failure of a project. PREview

does not define how priorities, inconsistencies, and redundancies are resolved.

This is the task of the joint team.

Consider the Use of Formal Methods When Appropriate

A formal method in software development is a method that provides a formal lan-

guage for describing a software artifact such as a specification, design, or source

code. Formal proofs are possible, in principle, about properties of the artifact so

expressed. Vienneau47 recommends using formal methods to help adequately

capture requirements and cautions that many software engineers have adopted

new methodologies without understanding the root concepts. He believes formal

methods promise to yield benefits in quality and productivity. He notes that formal

methods are typically used in organizations at SW-CMM level 3 and above and

asserts that an organization that can figure out how to integrate formal methods

effectively into their current process will be able to gain a competitive advantage.

Pitfalls

We’ve captured a lot of experience and lessons learned in this chapter. Here are

some stumbling blocks you may run into and suggestions for how to deal with

them:

1. It’s very difficult to find one person who has the qualities of a domain or an

SME and is a trained requirements engineer. Often it’s easier to place some-

one with one of these credentials in the role of the requirements engineer.

90 Pitfalls

46Sommerville et al., “Viewpoints for Requirements Elicitation: A Practical Approach.”

47Vienneau,“A Review of Formal Methods.” The discipline of a formal specification can result in

fewer specification errors. Using specifications written in a formal language to complement nat-

ural language descriptions can make the contract between a user and a developer more precise.

My experience is that it’s worth the extra effort and cost to find that one per-

son who has both qualities. The reason is that the domain expert who is also

a trained requirements engineer will provide the project invaluable advice

concerning the real requirements. If you can’t find one person with both

skills, my suggestion is to train someone who is a domain expert in require-

ments engineering. This training will help a domain expert balance her pre-

conceived ideas concerning the solutions with the concept of eliciting the

real requirements and being sensitive to implementation issues.

2. Customers will try to put much of the burden for defining requirements on

developers. “You tell me; you’re the expert,” they’ll say! Not really. Developers

may be trained and proficient in developing systems, but they are not the

ones who should decide on real customer needs and expectations. As I’ve

emphasized, it requires a joint effort to define the real requirements. As noted

earlier, it is important to train requirements engineers and developers not to

make assumptions, not to make requirements decisions, and not to gold plate.

You’ll find that this investment in training and discipline is valuable.

3. Project start-up situations are often hectic. It’s difficult to pay attention to all

of the tasks that need to be addressed. This is certainly true with respect to

initiating and installing effective requirements practices. Consider utilizing

an internal or external expert to assist with needed activities.

4. Don’t use “smallness” as an excuse for not taking advantage of the practices,

recommendations, and suggestions provided in this book. These are proven

practices—on small projects and on larger ones. Tailor your approach based

on common sense. Make good use of the underlying ideas and concepts.

Summary

This chapter highlights that the customer’s stated needs require careful scrutiny

to determine the real needs. Several specific recommendations and suggestions

are advocated to help you determine the real customer needs and requirements.

You will find that you can save effort and money, as well as do a better job (im-

prove customer satisfaction), by addressing these recommendations. Please don’t

ignore them because they are presented concisely. I’ve emphasized that a huge

amount of waste (almost half the costs on a typical project) is caused by using

the normal approach—relying on the customer’s stated requirements. Informed

PMs and requirements engineers can redirect resources that are typically wasted

to the implementation of these recommendations and suggestions. Enlist the

Summary 91

support of your PM, and utilize a requirements specialist to implement these

proven ideas. An organization should undertake implementation of these recom-

mendations gradually and seek to evolve an approach that is continuously

improved, based on your own experience and what works in your environment.

Key References and Suggested Readings

Barry Boehm. WinWin Spiral Model & Groupware Support System. 1998

Available at http://sunset.usc.edu/research/WINWIN/index.html. Dr. Boehm is

Director of the University of Southern California Center for Software Engi-

neering. The Center is under contract to the Defense Advanced Research Projects

Agency via the Air Force Research Laboratory (formerly known as Rome

Laboratories). It plans to develop (in collaboration with The Aerospace Corp-

oration) a robust version of the WinWin System and to apply it to the domain of

satellite ground stations.

Barry Boehm, Alexander Egyed, Julie Kwan, Dan Port, Archita Shah, and Ray

Madachy. “Using the WinWin Spiral Model: A Case Study.” IEEE Computer

1998:31 33–44. This University of Southern California Center for Software

Engineering research project has three primary elements: (1) Theory W, a man-

agement theory and approach that says making winners of the system’s key stake-

holders is a necessary and sufficient condition for project success; (2) the

WinWin Spiral Model, which extends the spiral software development model by

adding Theory W activities to the front of each cycle; and (3) WinWin, a group-

ware tool that makes it easier for distributed stakeholders to negotiate mutually

satisfactory system specifications. The authors found in this work that the most

important outcome of product definition is not a rigorous specification but a

team of stakeholders with enough trust and shared vision to adapt effectively to

unexpected changes. The researchers believe that the approach will transition

well to industry use.

Daniel P. Freedman and Gerald M. Weinberg. Handbook of Walkthroughs,

Inspections, and Technical Reviews. 3rd ed. Chicago: Scott, Foresman and Co.,

1990. This book provides a variety of examples of peer reviews and is a good

source for organizations that want to consider alternative approaches.

Donald C. Gause and Gerald M. Weinberg. Are Your Lights On? How to Know

What the Problem REALLY Is. 2nd ed. New York: Dorset House Publishing,

1989. As the title suggests, this book is interesting and light reading but offers

92 Define the Real Customer Needs

valuable insights concerning real needs. The authors’ perspective is that cus-

tomers need assistance in defining their real requirements. A good requirements

process will (1) identify the real problem, (2) determine the problem’s “owner,”

(3) identify its root cause, and (4) determine whether to solve it. This is recom-

mended reading for requirements engineers and their customers.

Tom Gilb and Dorothy Graham. Software Inspection. Reading, MA: Addison-

Wesley, 1993. This book is about inspections of any work product, not just soft-

ware. The authors’ approach is very rigorous and therefore requires more

training and is more expensive than normal peer reviews. However, it results in

more defects being removed earlier, thus saving costs later in the development

cycle. This book is invaluable for an organization that is committed to using

inspections of work products—a proven method with good payback. Note that

Rob Sabourin offers an economical inspections training and implementation

approach. Contact him at rsabourin@amibug.com.

Rita Hadden. “How Scalable Are CMM Key Practices?” CROSSTALK 1998: vol.

11(4) 18–23. Hadden provides process improvement consulting services for

organizations of all sizes. She notes that many practitioners are convinced that

models such as the SW-CMM are not practical for small organizations because

the cost of applying the recommended practices outweighs benefits. Her experi-

ence with more than 50 small projects does not support this view. The article

describes using a disciplined, repeatable approach for projects of short duration.

She concludes that CMM key practices are scalable.

Ivy Hooks. Guide for Managing and Writing Requirements. 1994. Available at

ivyh@complianceautomation.com. This is a concise, well-written guidebook

based on extensive experience by a practicing requirements engineer and consul-

tant. It addresses scoping a project, managing requirements, how systems are

organized, and levels of requirements, writing good requirements, requirements

attributes, and specifications.

Ivy Hooks. Managing Requirements. 1994. This white paper is available at the

Compliance Automation Web site http://www.complianceautomation.com/. It

provides a good analysis of how failure to invest in the requirements process

affects projects, and it describes major problems based on Hooks’s experience.

Also, it describes some of the characteristics of good requirements.

Ivy Hooks. Writing Good Requirements: A One-Day Tutorial. McLean, VA,

1997 Compliance Automation, Inc. Sponsored by the Washington metropolitan

Key References and Suggested Readings 93

area chapter of the International Council on Systems Engineering, June 1997. This

is an example of the types of briefings and courses that can be provided to facili-

tate a project or an organization in dealing with the requirements process. The

pearl here is to ensure that you have a requirements process and that you take

advantage of industry best practices in executing it. Don’t find your own way and

learn the errors of your ways at considerable financial, personal, project, and orga-

nizational costs.

Pradip Kar and Michelle Bailey. Characteristics of Good Requirements. 1996.

Available at http://www.complianceautomation.com/. This document provides a

valuable, readily available discussion of the characteristics of individual and

aggregate requirements (note that characteristics of individual requirements are

applicable to aggregates too). Kar and Bailey emphasize that writing good

requirements is difficult, requires careful thinking and analysis, but is not magi-

cal. Time spent up front, carefully defining and articulating the requirements, is

essential to ensuring a high-quality product. This is recommended reading for

requirements engineers.

Joachim Karlsson and Kevin Ryan. “A Cost-Value Approach for Prioritizing

Requirements.” IEEE Software 14(5) 1997: 67–74. This is an excellent article that

explains a method for prioritizing requirements (see the summary of their

method provided in this chapter). Karlsson and Ryan provide a process for using

the cost-value approach, utilizing the Analytic Hierarchy Process (AHP), which is

also explained in their article.

Geri Schneider and Jason P. Winters. Applying Use Cases: A Practical Guide.

Reading, MA: Addison-Wesley, 1998. This is a practical guide to developing and

using use cases. Schneider and Winters provide examples from their experience

and provide a case study that offers insight into common errors. An illustration

of the UML notation for diagramming use cases is provided. Of particular use to

requirements engineers is a “how-to” discussion on applying use cases to identify

requirements.

I. Sommerville, P. Sawyer, and S. Viller. “Viewpoints for Requirements Elicita-

tion: A Practical Approach.” In: Proceedings of the 1998 International Con-

ference on Requirements Engineering (ICRE’98), April 6–10, 1998, Colorado

Springs, CO. New York: IEEE Computer Society, 1998: 74–81. Sommerville and

colleagues introduce an approach called PREview to organize requirements

derived from radically different sources. They show how concerns that are key

94 Define the Real Customer Needs

business drivers of the requirements elicitation process may be used to elicit and

validate system requirements. They note that PREview has been designed to

allow incremental requirements elicitation (see Figure 4-12 for a high-level view

of the PREview process).

Gerald M. Weinberg. The Secrets of Consulting. New York: Dorset House

Publishing, 1986. Weinberg defines consulting as the art of influencing people at

their request. As noted by Virginia Satir in the foreword, this book actually

advises people on how they can take charge of their own growth. The author pro-

vides a light-hearted view of the role of a consultant, sharing valuable insights

about people. A fundamental tenet is that we all need to follow a personal learn-

ing program. Several sources for readings and other experiences are provided.

Karl Wiegers. “First Things First: Prioritizing Requirements.” Software

Development Magazine 1999: 7(10):24–30. This is a good explanation of why

requirements need to be prioritized and a helpful description of how to do it.

Wiegers provides a Microsoft Excel requirements prioritization spreadsheet and

other requirements tools that can be downloaded from his Web site, http://www.

processimpact.com.

Karl Wiegers. “Habits of Effective Analysts.” Software Development Magazine

2000: 8(10):62–65. See also http://www.swd.mgazine.com. Wiegers provides

thoughtful and provocative insights concerning the role of the requirements engi-

neer (also called the requirements analyst, business analyst, systems analyst, or

requirements manager), patterned after Steven Covey’s acclaimed book The Seven

Habits of Highly Effective People (Fireside, 1989). He emphasizes that requirements

engineering has its own skill set and body of knowledge, which is given scant

attention in most computer science educational curricula and even by most sys-

tems and software engineering organizations. Many organizations expect devel-

opers or project managers to handle this vital function on their own. A competent

requirements engineer must combine communication, facilitation, and interper-

sonal skills with technical and business domain knowledge. Even a dynamite

developer or a systems-savvy user needs suitable preparation before acting in this

role. Wiegers recommends that every organization should develop an experienced

cadre of requirements analysts, even though requirements engineering may not

be a full-time function on every project. This article is recommended reading for

all PMs and task leaders.

Key References and Suggested Readings 95

